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Abstract—When solving the security-constrained unit com-
mitment (SCUC) problem, one of the most complicating factors
is handling the large number of transmission constraints,
corresponding to both base case and N-1 line contingency
scenarios. Although it is well known that only a few of
these constraints need to be enforced, identifying this critical
subset of constraints efficiently remains a challenge. In this
paper, we propose a novel and simple iterative contingency-
screening procedure that is able to eliminate 99.4% of the
constraints selected by existing iterative methods, allowing
for the solution of much larger-scale problems. We report
computational results in realistic instances with up to 6,468
buses and 9,000 transmission lines. The method was also
independently implemented and evaluated at MISO, where it
performed faster than alternative methods.
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I. INTRODUCTION

SCUC is one of the most fundamental optimization prob-
lems in energy systems, being solved a number of times
daily by major reliability coordinators, independent system
operators (ISOs) and regional transmission organizations
(RTOs). The objective of SCUC is to determine the most
cost-effective operating schedule of generating units, while
ensuring that the load is satisfied over a given operational
horizon and that the operations are secured even if there is a
transmission line contingency. Additional constraints, such
as ramping constraints and system-wide operating reserves,
are also usually enforced.

Mathematically, SCUC is nowadays most often formu-
lated as a mixed-integer linear programming problem (MIP).
One factor that significantly complicates the solution of
SCUC is the requirement that any solution must satisfy
a large set of transmission constraints, corresponding not
only to the base case, but also to each N-1 line contin-
gency scenario. While adding all these constraints to the
MIP formulation can quickly make SCUC computationally
intractable, it has been observed that enforcing only a small
subset of these constraints is already sufficient to guarantee
that all the remaining ones are automatically satisfied [1].
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Identifying this critical subset of constraints efficiently,
however, remains a challenge.

In practice, system operators still rely on experience and
external ad-hoc processes to decide what transmission con-
straints to enforce [2]. Previous research proposed identify-
ing a critical set of constraints through auxiliary optimization
problems [3]. However, such approach is not yet scalable to
real-size transmission networks. More recently, researchers
showed that a good subset of constraints can be found
through a simple iterative procedure [2], [4]. Their approach
is the following. First, SCUC is solved with only the pre-
contingency transmission constraints. Then, after a solution
is obtained, every post-contingency transmission constraint
that turns out to be violated is added to the relaxation.
The process repeats, and new constraints are added until
no violations are found.

In this paper, we propose a refinement to this procedure.
The main novelty is that, instead of adding all the violated
post-contingency transmission constraints to the relaxation,
as done in previous methods, we develop a fast and effective
heuristic procedure to filter down this list. Numerical exper-
iments show that our method is able to eliminate 99.4%
of the constraints selected by previous methods, leading to
significant improvements in solution time. More importantly,
the dramatic reduction in the number of constraints allows us
to solve significantly larger problems, and we present com-
putational results on large-scale realistic instances, with up
to 6,468 buses and 9,000 transmission lines. The proposed
method was also independently implemented and evaluated
at MISO, the Midcontinent Independent System Operator.
The proposed method presented better performance when
compared to MISO’s own constraint filtering methods.

II. MATHEMATICAL FORMULATION

A number of MIP formulations have been proposed for
the security-constrained unit commitment problem. In our
experiments, we have modeled SCUC using formulation
[5]. The formulation enforces (i) minimum and maximum
production limits; (ii) ramping restrictions; (iii) minimum
uptime and downtime; and (iv) system-wide reserves. It
includes startup costs, as well as piecewise linear production
costs. For transmission, the DC power flow-model was
used, and the constraints were modeled using Injection Shift
Factors (ISF).

III. CONSTRAINT SELECTION ALGORITHM

In this section, we present a refinement of the procedures
presented in [2] and [4]. Our refinement is based on two
main observations. First, commercial MIP solvers have be-
come surprisingly effective at solving the unit commitment
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problem when no transmission constraints are included. In
fact, these solvers are often able to find very high quality
solutions at the root node of the branch-and-bound tree
through primal heuristics and cutting planes alone. It would
be helpful to take advantage of these advancements, even
when solving SCUC. Secondly, as already observed by [6],
even when multiple N-1 security constraints are violated, it
is seldom necessary to add all of them to the relaxation,
as done before. Enforcing a small number of constraints is,
most times, already sufficient to guarantee that many others
are automatically satisfied.

With these two observations in mind, we propose the
usage of Algorithm 1 to solve SCUC. At start, we solve
a relaxation of SCUC that does not have any transmission
or N-1 security constraints. Then, pre-contingency and post-
contingency flows are calculated by using ISF and Line
Outage Distribution Factors (LODF), respectively. Next,
instead of adding all the violated constraints to the re-
laxation, as done by previous methods, we filter this list
even further. First, we keep at most one constraint for
each monitored transmission line. That is, if the flow on a
certain monitored transmission line exceeds the limit under
multiple N-1 line contingency scenarios, we keep only the
constraint corresponding to the scenario that causes the
largest violation. Next, from all the remaining constraints,
we keep only a fixed number k of constraints having the
highest violation. The best value for k varies according to
the network, but values between 5 and 15 presented the best
results in our experiments, for networks of various sizes.
The main difference between our approach and [6] or [7] is
that we do not solve any auxiliary problems to decide which
subset of constraints to keep. Picking the constraints that are
most violated proves to be a fast and effective heuristic. We
clarify that the solutions obtained by Algorithm 1 are the
same as the solutions obtained by previous methods, such
as [4].

Note that, because of the size of the transmission networks
considered, merely identifying and generating the violated
constraints can become a bottleneck to the entire procedure
if not done carefully. In our implementation, pre-contingency
and post-contingency flows are computed using jblas, a
fast linear algebra library. Because of their high density, we
never explicitly compute transmission constraints until it has
been determined that they will be added to the relaxation.
In addition, to efficiently maintain the list of the largest
violations found so far, we make use of priority queues.
Our implementation also takes advantage of the fact that
many steps in Algorithm 1 can be performed in parallel,
in particular the computation of the post-contingency flows.
To improve performance even further, we solve the first
iterations of SCUC with a large MIP gap tolerance of 5%.
After no further violations are found, the gap tolerance is
reduced to 0.1% and the problem is resolved.

IV. COMPUTATIONAL EXPERIMENTS

A. Instances and setup

Five realistic instances of varying sizes were used to
evaluate the effectiveness of the proposed method. Table
I presents the number of buses, generators, branches and
scenarios for each instance. The table also shows the total
number of transmission constraints in the model, per time

Algorithm 1 Security-Constrained Unit Commitment

1: Let LM be the set of monitored transmission lines
2: Let LV be the set of transmission lines susceptible to disruption
3: Create a relaxation of SCUC without any transmission constraints
4: Solve the current relaxation
5: Compute pre-contingency flow f0 using ISF
6: Compute post-contingency flow fv using LODF, ∀v ∈ LV

7: Let γvm = max{−fvm−Fm, 0, fvm−Fm},∀v ∈ LV ∪{0},m ∈ LM

8: Let Γ = {(v,m) ∈ (LV ∪ {0})× LM : γvm > 0} be the violations
9: if Γ is empty then return

10: else
11: For m ∈ LM , keep in Γ only the pair (v,m) with highest γvm
12: Keep in Γ only the k pairs (v,m) having the highest γvm
13: For every violation in Γ, add the corresponding cut to the relaxation
14: goto step 4

TABLE I. SIZE OF SELECTED INSTANCES.

Instance Buses Units Branches Scenarios Constraints

472-bus 472 216 752 744 1,118,976
1354-bus 1,354 260 1,991 1,288 5,128,816
1951-bus 1,951 391 2,596 1,497 7,772,424
3375-bus 3,374 596 4,161 3,245 27,004,890
6468-bus 6,468 1,295 9,000 6,094 109,692,000

period, when no filtering is performed. A 24-hour planning
horizon was considered for all instances. Instance 472-bus
is described in [4]. All the other instances were obtained
from MATPOWER [8] and correspond to realistic, large-
scale European test systems. In the MATPOWER instances,
there is one contingency scenario for each transmission
line, except for those lines whose removal would cause
the network to become disconnected. Some generator data
necessary for SCUC was missing in these instances, and was
artificially generated based on real data distributions. As it
is usual, sensitivity factors with small magnitudes were set
to zero, in order to improve the sparsity of the constraints.
The cutoffs used were 0.005 and 0.0005 for the ISF and
LODF matrices, respectively.

The algorithms were implemented in Java, with IBM
ILOG CPLEX 12.7.2 as MIP solver, and jblas 1.2.4 as
linear algebra library. The experiments were run on an Intel
Core i7-4600U (2 cores, 4 threads, 3.10 GHz) and 16.0 GB
of memory. No time limit was imposed. The relative MIP
gap tolerance was set to 0.1%, and all the other CPLEX
parameters were left unmodified. It is well known that MIPs
are often subject to dramatic variability in performance due
to seemingly trivial changes [9]. To reduce this variability,
each instance was solved 10 times, and CPLEX was given
a different random seed at each run. The numbers obtained
were then averaged.

B. Performance Evaluation
Table II shows the average wall-clock running time, num-

ber of iterations and number of constraints added (per time
period), for different methods. Column “No Transmission
(NT)” shows the average running-time needed to solve the
model without any transmission constraints or N-1 security
constraints. Column “Proposed” corresponds to Algorithm 1.
Column “TSR”, named after the initials of the authors,
corresponds to the strategy presented in [4].

First we observe that the proposed method added sig-
nificantly fewer transmission constraints to the relaxation
when compared to TSR. Indeed, for instance 472-bus, the
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TABLE II. PERFORMANCE COMPARISON ON IEEE AND
MATPOWER INSTANCES. MISSING VALUES INDICATE

OUT-OF-MEMORY.

NT Proposed TSR

Instance Time (s) Time (s) Iter. Cuts Time (s) Iter. Cuts

472-bus 13.3 32.5 3.8 8.8 370.0 2.7 1,591.0
1354-bus 16.3 28.7 5.0 27.8 — — —
1951-bus 26.5 31.9 4.0 17.9 — — —
3375-bus 39.2 146.1 4.2 29.5 — — —
6468-bus 98.0 279.4 4.7 35.8 — — —

number of constraints added per time period by the proposed
method was only 0.55% of TSR. This significant reduction
also reflected in the total wall-clock time, with the proposed
method being more than 11 times faster than TSR, on
average. Interestingly, the reduction in the number of added
constraints did not cause a significant increase in the number
of iterations. The proposed method required on average only
1.1 iterations more than TSR.

More importantly, the dramatic reduction in the number
of constraints added allowed us to solve much larger scale
problems than [4]. While TSR exceeds the memory limit for
all instances, with the exception of 472-bus, the proposed
method is able to solve problems with up to 6468 buses
in under 5 minutes of running time. We also observe that
the number of cuts added did not increase as fast as the
total number of transmission constraints in the model. For
example, although 6468-bus has almost 100 times more
transmission constraints in total than 472-bus, the proposed
method added only 4 times the number of cuts. The num-
ber of iterations have also not increased significantly with
instances of very large size. We conclude that the proposed
method scales very well, even for large-scale instances.
With the proposed algorithm, solving the unit commitment
problem with transmission and N-1 security constraints was
only 3 to 4 times slower than solving the traditional unit
commitment problem.

C. MISO Implementation and Evaluation

The proposed method was independently implemented
and evaluated at MISO, the Midcontinent Independent Sys-
tem Operator, which currently operates one of the largest
electricity markets in the world. MISO’s network model
includes over 45,000 buses and 1,400 generators. When
solving Day-Ahead SCUC, MISO needs to enforce a large-
number of pre-selected watch list constraints, which are
identified through external processes, but which are not
always binding. To mitigate the negative performance impact
of adding all these constraints simultaneously to the relax-
ation, MISO developed its own iterative constraint filtering
procedure, named the decomposition method, as described
in Section III.C of [2].

Table III shows a performance comparison between
MISO’s decomposition method and the proposed approach.
Three challenging day-ahead samples were selected for this
benchmark, corresponding to one winter day, one spring day,
and one summer day. We note that MISO’s implementation
of Algorithm 1 was simplified, and, for technical reasons,
did not take advantage of some features found in modern
MIP solvers, such as warm starting. Nevertheless, the pro-
posed approach was still faster than MISO’s decomposition

TABLE III. PERFORMANCE COMPARISON ON MISO INSTANCES.

MISO Proposed

Instance Time (s) Iter. Gap Time (s) Iter. Gap

Case 1 1352 3 0.07% 1120 4 0.08%
Case 2 1877 4 0.09% 1537 5 0.06%
Case 3 1410 3 0.03% 1335 4 0.04%

Average 1546 3.3 0.06% 1331 4.3 0.06%

approach, requiring 14% smaller running times, while pro-
ducing solutions of the same quality. Although the proposed
approach required more iterations, each iteration was solved
faster, leading to a net reduction in running time.

V. CONCLUSION

In this paper, we presented a simple and novel iterative
contingency-filtering scheme for SCUC. In computational
experiments, the proposed method eliminated 99.4% of the
constraints selected by earlier iterative methods, leading
to significant performance improvements. The method was
able to solve instances with up to 6,468 buses and 9,000
transmission lines in under 5 minutes of running time. The
method was also implemented and evaluated independently
MISO, where it performed faster than MISO’s existing
constraint filtering methods, while producing solutions of
same quality.
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